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ARTIFICIAL INTELLIGENCE, MACHINE 
LEARNING, AND DEEP LEARNING 

Artificial intelligence (AI) is a broad term that describes any 
task performed by a computer that normally requires human 
intelligence [1,2]. Machine learning (ML) is defined as a sub-
set of AI that enables computers to learn from “data” without 
explicit programming to make predictions when new data are 
encountered [1]. Deep learning is part of ML and is currently 
gaining significant attention owing to its utilization of “big data” 
in medicine. Deep learning is composed of a large number of 
layers and interconnected artificial neural networks (ANNs) 
that enable computations of large datasets with high perfor-
mance. A convolutional neural network (CNN) is one exam-
ple of ANNs that excels at pattern recognition and identifying 
complex patterns in imaging data compared with previous 
learning methods [1]. The hierarchy of AI, ML, and deep learn-
ing is shown in Fig. 1. 

Artificial Intelligence in Neuro-Oncologic Imaging: A Brief  
Review for Clinical Use Cases and Future Perspectives
Ji Eun Park  

Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea 

Received December 12, 2021
Revised March 24, 2022
Accepted April 18, 2022

Correspondence
Ji Eun Park
Department of Radiology and 
Research Institute of Radiology, 
Asan Medical Center, 
University of Ulsan College of Medicine, 
88 Olympic-ro 43-gil, Songpa-gu, 
Seoul 05505, Korea 
Tel: +82-2-3010-1505
Fax: +82-2-476-4719
E-mail: jieunp@gmail.com 

The artificial intelligence (AI) techniques, both deep learning end-to-end approaches and radiomics 
with machine learning, have been developed for various imaging-based tasks in neuro-oncology. In 
this brief review, use cases of AI in neuro-oncologic imaging are summarized: image quality improve-
ment, metastasis detection, radiogenomics, and treatment response monitoring. We then give a brief 
overview of generative adversarial network and potential utility of synthetic images for various deep 
learning algorithms of imaging-based tasks and image translation tasks as becoming new data input. 
Lastly, we highlight the importance of cohorts and clinical trial as a true validation for clinical utility of AI 
in neuro-oncologic imaging. 
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CURRENT USE CASES OF AI IN 
NEURO-ONCOLOGIC IMAGING 

To identify current research trends, original research papers 
of AI published in the neuro-oncology field, database search 
was conducted in the MEDLINE (National Center for Bio-
technology Information, NCBI) databases up from any time 
until March 24, 2022. The search terms used to find radiomics 
studies were “artificial intelligence” OR “deep learning” OR 
“machine learning” OR “radiogenomics” OR “radiomics” AND 
“neuro-oncology” OR “brain tumor” OR “glio*” or “brain me-
tastasis.” The search identified 2,890 full text articles.

Applications of AI in the clinical workflow of neuro-onco-
logic patients are summarized in Fig. 2. The use cases of AI 
suggest that AI/ML can be applied to solve a particular prob-
lem in a clinical situation. The following review briefly sum-
marizes current use cases of AI in neuro-oncology. 

Machine learning and deep learning for 
radiogenomics

Image-based diagnoses of genetic mutations are of signifi-
cance for glioma because radiogenomics can stratify low- and 
high-risk patients to further guide patient consultations and 
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therapeutic plans. Radiomics [3-5] and deep learning studies 
[6-9] have focused on the prediction of key genomic landscapes 
observed in diffuse gliomas [10]: isocitrate dehydrogenase 
(IDH) mutations, 1p/19q codeletions, O6-methylguanine-DNA 
methyltransferase (MGMT)-promoter methylation status, 
and epidermal growth factor receptor (EGFR) amplification 
mutations. 

Radiomics involves the extraction of numerous quantitative 
features from images from a given region-of-interest (tumor 
portion) to assess the spatial complexity and heterogeneity of 

the tumor. Morphological (volume/shape), histogram (first-
order), texture (second-order), and transform-based features 
are the most commonly used radiomics features [11,12]. Ra-
diomics features are subsequently applied using a feature se-
lection step to reduce the dimensionality of the data [13]. Ra-
diogenomics of gliomas is applied to multiparametric imaging 
to predict not only a single genetic mutation but also complex 
or multiple genomic alterations. Kickingereder et al. [14] dem-
onstrated in 152 glioblastomas that radiomics from multipa-
rametric MRI could predict DNA methylation status and hall-

Fig. 1. The hierarchy of artificial intelligence, machine learning, and deep learning.

Fig. 2. Diagram demonstrating artificial intelligence (AI), machine learning (ML), and deep learning in the clinical workflow of neuro-oncolo-
gy patients. Following image acquisition, deep learning-based reconstruction can be applied to reduce noise and improve image quality. 
Then, AI-assisted image-based tasks are performed, which include deep learning-based detection and segmentation. After segmentation, 
the quantitative analysis of radiomics can be applied, and further analyses are performed using ML. AI-assisted image-based tasks help to 
provide quantitative and standardized reporting. Importantly, deep learning-based image generation can be applied during the data input 
stage and may improve prediction performance during every process of AI in neuro-oncologic imaging. 
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measurement of two-dimensional diameters of contrast-en-
hancing lesions of glioblastoma [22]. A recent study demon-
strated that automated deep learning-based volumetric as-
sessment provides highly accurate segmentation of contrast-
enhancing tumor and non-enhancing T2/fluid-attenuated 
inversion recovery signal abnormalities with independent mul-
ticenter validation, enabling quantitative volumetric tumor 
response assessment [21]. The study demonstrated higher 
agreement of the quantitative volumetrically defined time to 
progression (TTP) than that of the RANO assessment by a 
margin of 36%, and the automated volumetrically defined TTP 
was a better surrogate endpoint for overall survival than was 
RANO [21]. These findings provide evidence that deep learn-
ing-based volumetric assessment of tumor response is both 
feasible and clinically important for providing high-quality 
imaging endpoints in neuro-oncology.

Deep learning image-to-image task (2): image 
detection for brain metastasis detection 

Another use case for segmentation using deep learning is 
the detection and segmentation of brain metastases in neuro-
oncology. The detection of brain metastases is important; how-
ever, it creates a considerable workload for many radiologists, 
especially given the rise in cancer incidence, survival rates, and 
use of thin-section contrast-enhanced MRI [23,24].

Several deep learning methods using CNN have been pro-
posed [23,25,26] that improve radiologists’ performance for 
detecting metastases <100 mm in size from 89.83% to 100% 
[26]. Currently, an important limitation of deep learning meth-
ods is the trade-off between false-positive rates and sensitivi-
ty, such as detecting vascular structures when the threshold is 
low (high sensitivity and high false-positive rate) or failing to 
detect small metastases <3 mm in size when the threshold is 
high (low sensitivity). Recently, a consensus-recommended 
MRI protocol for metastasis was proposed [24], and subse-
quent studies [27,28] using black blood imaging demonstrat-
ed high sensitivity with a low false-positive rate. The represen-
tative cases are shown in Fig. 3. Automated detection of brain 
metastases will ultimately reduce workloads for radiologists by 
triaging cases and improve detection accuracy as it becomes 
an assistant (first) reader before radiologists. 

Deep learning image-to-image task (3): image 
translation for better image quality 

The role of deep learning is not limited to the image-based 
tasks of detection, segmentation, and classification, which were 
previously performed by humans. The acquisition and pre-pro-
cessing of MRI images can be empowered using deep learning. 
One example is deep learning-based reconstruction (DLR), 
which uses a deep CNN-based algorithm embedded into the 

mark copy number variations. Hu et al. [15] analyzed 48 image-
guided biopsies from glioblastomas and associated these with 
radiomics from structural MRIs to successfully predict EGFR 
(75%), PDGFRA (77.1%), CDKN2A (87.5%), and RB1 muta-
tions (87.5%). Recently, Park et al. [16] demonstrated multi-
parametric MRI radiomics using diffusion and perfusion im-
aging to predict core signaling pathways from next-generation 
sequencing of IDH-wild type glioblastomas. In brain metas-
tasis, radiomics applied in prediction of the primary tumor 
types [17] or prediction of EGFR mutation status in non-small 
cell lung cancer [18]. Due to heterogeneous nature of patients 
cohort and small size of the lesions, the quality of radiogenom-
ics research on brain metastasis is not often satisfactory [19]. 
In deep learning, CNN is the most commonly used algorithm. 
One study [7] using 256 MRIs from the Cancer Imaging Ar-
chives dataset showed a prediction accuracy of 94% for IDH 
status, 92% for 1p/19q co-deletion status, and 83% for MG-
MT-promoter methylation status. However, the deep learning 
method requires the availability of a large amount of input data, 
and classification problems of genomic mutations often suffer 
from data hungriness. This issue can be resolved using the 
data augmentation method by imaging generation, which will 
be discussed further in this review. 

Deep learning image-to-image task (1): 
segmentation using U-net for treatment response 
monitoring

As mentioned above, supervised learning for classification 
requires a large amount of data. Fortunately, image-to-image 
translation and image segmentation (image to binary mask) 
tasks do not suffer from data hungriness and are thus suitable 
for neuro-oncologic imaging. The first use case is treatment 
response monitoring with deep learning-based tumor seg-
mentation. 

Deep learning-based segmentation can be used in both rou-
tine clinical practice and data research, with the benefit that 
computers do not tire and can provide fast and reproducible 
segmentations. The Multimodal Brain Tumor Image Segmen-
tation Benchmark [20] is one effort that can be used to en-
hance technical developments. “This is a public dataset of MR 
scans of low-and high-grade gliomas for challenge of tumor 
segmentation algorithm. More than 20 different tumor seg-
mentation algorithms were optimized and the reference data-
set are publicly available.” 

Recently, the importance and meaningful clinical use of deep 
learning-based brain tumor segmentation were demonstrat-
ed using automated and quantitative assessment of treatment 
response [21]. The Response Assessment in Neuro-Oncology 
(RANO) criteria is the standard method for assessing the treat-
ment response of brain tumors and is based on the manual 
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MRI reconstruction pipeline [29] that is placed within the MRI 
machine. The algorithm takes raw k-space data as the input 
and generates high-fidelity images as the output. Compared 
with conventional ML image reconstruction, the deep learn-
ing algorithm provides higher spatial resolution with more 
highly defined edges [29,30]. In brain tumor imaging, higher 
spatial resolution enables the acquisition of high-resolution 
and thin-sliced images with less noise; this is particularly valu-
able for small anatomic structures with small tumors, such as 
pituitary adenomas, where the normal pituitary stalk and gland 
need to be delineated from tumor tissue. The representative 
cases obtained using DLR are shown in Fig. 4. A recent study 
by Kim et al. [31] demonstrated that 1 mm DLR MRI achieved 
higher diagnostic performance than that of 3 mm MRI (p= 

0.01 for reader 1, p=0.02 for reader 2) for identifying cavern-
ous sinus invasion by a residual tumor. Lee et al. [32] demon-
strated that 1 mm DLR MRI provides thin slice images that 
increase the sensitivity for detecting pituitary microadenoma 
and small recurrent/residual tumors after initial surgery. The 
readers preferred 1 mm DLR MRI over 3 mm routine MRI for 
delineating the healthy pituitary stalk and gland. Moreover, 
inexperienced readers preferred 1 mm DLR MRI more than 
did experienced readers. Thus, thin-sliced DLR MRI has great-
er value than routine thick sliced MRI because it has higher 
sensitivity for detecting pituitary adenoma, and allows better 
delineation of the normal pituitary gland in pre- and postop-
erative adenoma, which facilitates accurate guidance during 
surgery. Furthermore, because the DLR algorithm is built into 

Fig. 3. Representative cases of deep learning detection for brain metastasis on black blood and white blood imaging, respectively. The red 
colored dots are AI prediction for brain metastasis. The enhancing lesion is a vascular structure (yellow arrow, pseudo-lesion) that leads to 
a false-positive artificial intelligence (AI) prediction.
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of GAN-based synthetic images of IDH-mutant glioblastomas 
were similar to those of actual images, and include tumor lo-
cation, absence of necrosis, enhancement category, and mar-
gin and type of tissue surrounding the non-enhanced regions. 
Moreover, these morphological variations were predictive of 
IDH mutations in both real and synthetic datasets. The study 
suggested that GAN-based datasets are a useful training set, 
and a diagnostic model was created from the morphological 
characteristics of actual and synthetic data. 

The GAN utility is an image-to-image translation task, which 
is useful for generating synthetic data to fill in absent or insuf-
ficient data in a multicenter trial. Jayachandran et al. [41] ex-
plored the synthesis of post-contrast MRI sequences from pre-
contrast MRI sequences alone by filling in absent imaging data 
without the use of the gadolinium-based contrast agent dur-
ing MRI. The study incorporated MRI data from three phase 
2 and 3 clinical trials with >2,000 patients. The deep learning 
segmentation technique was also included. The study demon-
strated that quantitative volumetrically defined TTP is possi-
ble with synthetic post-contrast MRI images, and no signifi-
cant difference (0.1 months) was found between synthetic and 
true post-contrast MRI sequences based on automatic volu-
metry. Thus, equal prognostic surrogate levels for predicting 
OS were demonstrated between synthetic and true post-con-
trast MRI data. 

Image generation using GAN will eventually become a data 
input itself and expand the use of deep learning algorithms. In 
supervised learning tasks, GAN will be used to augment the 
dataset and improve classification performance. In addition, in 
image-to-image translation tasks, GAN will become the initial 
learning step before segmentation and detection to improve 

the MRI machine, and the image processing time is relatively 
short, this technique offers significant potential for future stud-
ies in various clinical use cases.

FUTURE USE CASE: 
IMAGE GENERATION 

The most commonly used AI method (for both machine 
and deep learning) in neuro-oncologic imaging is supervised 
learning; the main purpose is classification, whereby reference 
standard include different classes of diagnoses (e.g., IDH-mu-
tant vs. IDH-wild type), prognoses (e.g., long vs. short survival), 
or treatment response (responder vs. non-responder). When 
provided with sufficient examples of different classes, algo-
rithms “learn” how to classify novel data [33]. However, in neu-
ro-oncology, data are often insufficient because of disease rar-
ity, limited data exchange between centers, and lack of data 
standardization between various MRI protocols, which ulti-
mately hinders optimal learning. Thus, data augmentation is 
a key element of deep learning models that is designed to deal 
with unbalanced classes and improve the accuracy of predic-
tions [34]. 

The generative adversarial network (GAN) enables the gen-
eration of new images from unlabeled original images [35] and 
is an attractive solution to overcome the limitation of small da-
tasets [34,36]. GAN learns the data distribution from training 
samples and generates realistic imaging data that are similar 
in distribution but are different from the original data [37-39]. 
In a clinical study, Park et al. [40] tested whether the morpho-
logical characteristics of GAN-produced images reflected ac-
tual tumors. The study showed that the morphologic variations 

Fig. 4. Representative cases of deep learning reconstruction (DLR) for pituitary adenoma. The DLR image provides better image quality 
with lesion conspicuity. Note that the residual mass in the left cavernous sinus (yellow arrow) can be clearly visualized on the 1 mm DLR 
image.
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image quality or fill datasets, thereby improving the perfor-
mance of the image-to-image task. For example, by generating 
rare cases of genetic mutation, the classification algorithm for 
IDH mutation status will be improved. The abundant of input 
images will improve performance of tumor detection and seg-
mentation. Also, the image translation of GAN will fill-in miss-
ing sequences of multi-parametric imaging that reduce contrast 
use of CT or MRI and/or reduce amount of radiation dose. 

This brief review summarized use cases in neuro-oncology, 
and recent technical and study concept improvements for AI. 
An important element for researchers conducting AI tasks 
[42] is robust validation of the clinical performance of AI al-
gorithms through the definition of use cases in the clinic and 
obtaining a prospective cohort study for real-world validation. 
The field of neuro-oncology is limited by the amount of data 
in the training set and designing the cohort for the validation; 
nevertheless, recent advances have enabled the development 
of approaches to improve and confront such challenges. In the 
future, researchers should be encouraged to improve study 
designs by prospectively registering studies and clinical trials.
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